3.1 Electrical
pada umumnya yang dimaksud dengan electrical adalah segala sesuatu yang berhubungan dengan Listrik.
Contohnya :
1. Motor Listrik
2. Inverter
1. Motor Listrik AC Satu Fasa
Berdasarkan karakteristik dari arus listrik yang mengalir, motor AC (Alternating Current, Arus Bolak-balik) terdiri dari 2 jenis, yaitu:1. Motor listrik AC / arus bolak-balik 1 fasa
2. Motor listrik AC / arus bolak-balik 3 fasa
Pembahasan dalam artikel kali ini di titik beratkan pada motor listrik AC 1 fasa, yang terdiri dari:
• Motor Kapasitor
• Motor Shaded Pole
• Motor Universal
Prinsip kerja Motor AC Satu Fasa
Motor AC satu fasa berbeda cara kerjanya dengan motor AC tiga fasa, dimana pada motor AC tiga fasa untuk belitan statornya terdapat tiga belitan yang menghasilkan medan putar dan pada rotor sangkar terjadi induksi dan interaksi torsi yang menghasilkan putaran. Sedangkan pada motor satu fasa memiliki dua belitan stator, yaitu belitan fasa utama (belitan U1-U2) dan belitan fasa bantu (belitan Z1-Z2), lihat gambar1
13


Gambar 1. Prinsip Medan Magnet Utama dan Medan magnet Bantu Motor Satu fasa
Belitan utama menggunakan penampang kawat tembaga lebih besar sehingga memiliki impedansi lebih kecil. Sedangkan belitan bantu dibuat dari tembaga berpenampang kecil dan jumlah belitannya lebih banyak, sehingga impedansinya lebih besar dibanding impedansi belitan utama.
Grafik arus belitan bantu Ibantu dan arus belitan utama Iutama berbeda fasa sebesar φ, hal ini disebabkan karena perbedaan besarnya impedansi kedua belitan tersebut. Perbedaan arus beda fasa ini menyebabkan arus total, merupakan penjumlahan vektor arus utama dan arus bantu. Medan magnet utama yang dihasilkan belitan utama juga berbeda fasa sebesar φ dengan medan magnet bantu.

Gambar 2. grafik Gelombang arus medan bantu dan arus medan utama
Gambar 3. Medan magnet pada Stator Motor satu fasa
14
Belitan bantu Z1-Z2 pertama dialiri arus Ibantu menghasilkan fluks magnet Φ tegak lurus, beberapa saat kemudian belitan utama U1-U2 dialiri arus utama Iutama. yang bernilai positip. Hasilnya adalah medan magnet yang bergeser sebesar 45° dengan arah berlawanan jarum jam. Kejadian ini berlangsung terus sampai satu siklus sinusoida, sehingga menghasilkan medan magnet yang berputar pada belitan statornya.
Rotor motor satu fasa sama dengan rotor motor tiga fasa yaitu berbentuk batang-batang kawat yang ujung-ujungnya dihubung singkatkan dan menyerupai bentuk sangkar tupai, maka sering disebut rotor sangkar.

Gambar 4. Rotor sangkar
Belitan rotor yang dipotong oleh medan putar stator, menghasilkan tegangan induksi, interaksi antara medan putar stator dan medan magnet rotor akan menghasilkan torsi putar pada rotor.
Motor Kapasitor
Motor kapasitor satu phasa banyak digunakan dalam peralatan rumah tangga seperti motor pompa air, motor mesin cuci, motor lemari es, motor air conditioning. Konstruksinya sederhana dengan daya kecil dan bekerja dengan tegangan suplai PLN 220 V, oleh karena itu menjadikan motor kapasitor ini banyak dipakai pada peralatan rumah tangga.

Gambar 5. Motor kapasitor
15
Belitan stator terdiri atas belitan utama dengan notasi terminal U1-U2, dan belitan bantu dengan notasi terminal Z1-Z2 Jala-jala L1 terhubung dengan terminal U1, dan kawat netral N terhubung dengan terminal U2. Kondensator kerja berfungsi agar perbedaan sudut phasa belitan utama dengan belitan bantu mendekati 90°.
Pengaturan arah putaran motor kapasitor dapat dilakukan dengan (lihat gambar6):
• Untuk menghasilkan putaran ke kiri (berlawanan jarum jam) kondensator kerja CB disambungkan ke terminal U1 dan Z2 dan terminal Z1 dikopel dengan terminal.
• Putaran ke kanan (searah jarum jam) kondensator kerja disambung kan ke terminal Z1 dan U1 dan terminal Z2 dikopel dengan terminal U1.

Gambar 6. Pengawatan motor kapasitor dengan pembalik putaran.
Motor kapasitor dengan daya diatas 1 KW di lengkapi dengan dua buah kondensator dan satu buah saklar sentrifugal. Belitan utama U1-U2 dihubungkan dengan jala-jala L1 dan Netral N. Belitan bantu Z1-Z2 disambungkan seri dengan kondensator kerja CB, dan sebuah kondensator starting CA diseri dengan kontak normally close (NC) dari saklar sentrifugal, lihat gambar 7.
Awalnya belitan utama dan belitan bantu mendapatkan tegangan dari jala-jala L1 dan Netral. Kemudian dua buah kondensator CB dan CA, keduanya membentuk loop tertutup sehingga rotor mulai berputar, dan ketika putaran mendekati 70% putaran nominalnya, saklar sentrifugal akan membuka dan kontak normally close memutuskan kondensator bantu CA.

Gambar 7. Pengawatan dengan Dua Kapasitor
16
Fungsi dari dua kondensator yang disambungkan parallel, CA+CB, adalah untuk meningkatkan nilai torsi awal untuk mengangkat beban. Setelah putaran motor mencapai 70% putaran, saklar sentrifugal terputus sehingga hanya kondensator kerja CB saja yang tetap bekerja. Jika kedua kondensator rusak maka torsi motor akan menurun drastis, lihat gambar 8.

Gambar 8. Karakteristik Torsi Motor kapasitor
MotorShaded Pole
Motor shaded pole atau motor phasa terbelah termasuk motor satu phasa daya kecil, dan banyak digunakan untuk peralatan rumah tangga sebagai motor penggerak kipas angin, blender. Konstruksinya sangat sederhana, pada kedua ujung stator ada dua kawat yang terpasang dan dihubung singkatkan fungsinya sebagai pembelah phasa.
Belitan stator dibelitkan sekeliling inti membentuk seperti belitan transfor mator. Rotornya berbentuk sangkar tupai dan porosnya ditempatkan pada rumah stator ditopang dua buah bearing.

Gambar 9. motor shaded pole, Motor fasa terbelah.
17
Irisan penampang motor shaded pole memperlihatkan dua bagian, yaitu bagian stator dengan belitan stator dan dua kawat shaded pole. Bagian rotor sangkar ditempatkan di tengah-tengah stator, lihat gambar 10.

Gambar 10. Penampang motor shaded pole.
Torsi putar dihasilkan oleh adanya pembelahan phasa oleh kawat shaded pole. Konstruksi yang sederhana, daya yang kecil, handal, mudah dioperasikan, bebas perawatan dan cukup di suplai dengan Tegangan AC 220 V, jenis motor shaded pole banyak digunakan untuk peralatan rumah tangga kecil.
Motor Universal
Motor Universal termasuk motor satu phasa dengan menggunakan belitan stator dan belitan rotor. Motor universal dipakai pada mesin jahit, motor bor tangan. Perawatan rutin dilakukan dengan mengganti sikat arang yang memendek atau pegas sikat arang yang lembek. Kontruksinya yang sederhana, handal, mudah dioperasikan, daya yang kecil, torsinya yang cukup besar motor universal dipakai untuk peralatan rumah tangga.

Gambar 11. komutator pada motor universal.
18
Bentuk stator dari motor universal terdiri dari dua kutub stator. Belitan rotor memiliki dua belas alur belitan dan dilengkapi komutator dan sikat arang yang menghubungkan secara seri antara belitan stator dengan belitan rotornya. Motor universal memiliki kecepatan tinggi sekitar 3000 rpm.

Gambar 12. stator dan rotor motor universal
Aplikasi motor universal untuk mesin jahit, untuk mengatur kecepatan dihubungkan dengan tahanan geser dalam bentuk pedal yang ditekan dan dilepaskan.
Motor 3 Fasa
Pada sistem tenaga listrik 3 fase, idealnya daya listrik yang dibangkitkan, disalurkan dan diserap oleh beban semuanya seimbang, P pembangkitan = P pemakain, dan juga pada tegangan yang seimbang. Pada tegangan yang seimbang terdiri dari tegangan 1 fase yang mempunyai magnitude dan frekuensi yang sama tetapi antara 1 fase dengan yang lainnya mempunyai beda fase sebesar 120°listrik, sedangkan secara fisik mempunyai perbedaan sebesar 60°, dan dapat dihubungkan secara bintang (Y, wye) atau segitiga (delta, Δ, D).
Gambar 1. sistem 3 fase.
19
Gambar 1 menunjukkan fasor diagram dari tegangan fase. Bila fasor-fasor tegangan tersebut berputar dengan kecepatan sudut dan dengan arah berlawanan jarum jam (arah positif), maka nilai maksimum positif dari fase terjadi berturut-turut untuk fase V1, V2 dan V3. sistem 3 fase ini dikenal sebagai sistem yang mempunyai urutan fasa a – b – c . sistem tegangan 3 fase dibangkitkan oleh generator sinkron 3 fase.
Hubungan Bintang (Y, wye)
Pada hubungan bintang (Y, wye), ujung-ujung tiap fase dihubungkan menjadi satu dan menjadi titik netral atau titik bintang. Tegangan antara dua terminal dari tiga terminal a – b – c mempunyai besar magnitude dan beda fasa yang berbeda dengan tegangan tiap terminal terhadapa titik netral. Tegangan Va, Vb dan Vc disebut tegangan “fase” atau Vf.

Gambar 2. Hubungan Bintang (Y, wye).
Dengan adanya saluran / titik netral maka besaran tegangan fase dihitung terhadap saluran / titik netralnya, juga membentuk sistem tegangan 3 fase yang seimbang dengan magnitudenya (akar 3 dikali magnitude dari tegangan fase).
Vline = akar 3 Vfase = 1,73Vfase
Sedangkan untuk arus yang mengalir pada semua fase mempunyai nilai yang sama,
ILine = Ifase
Ia = Ib = Ic
Hubungan Segitiga
Pada hubungan segitiga (delta, Δ, D) ketiga fase saling dihubungkan sehingga membentuk hubungan segitiga 3 fase.
20

Gambar 3. Hubungan Segitiga (delta, Δ, D).
Dengan tidak adanya titik netral, maka besarnya tegangan saluran dihitung antar fase, karena tegangan saluran dan tegangan fasa mempunyai besar magnitude yang sama, maka:
Vline = Vfase
Tetapi arus saluran dan arus fasa tidak sama dan hubungan antara kedua arus tersebut dapat diperoleh dengan menggunakan hukum kirchoff, sehingga:
Iline = akar 3 Ifase = 1,73Ifase
Daya pada Sistem 3 Fase
1. Daya sistem 3 fase Pada Beban yang Seimbang
Jumlah daya yang diberikan oleh suatu generator 3 fase atau daya yang diserap oleh beban 3 fase, diperoleh dengan menjumlahkan daya dari tiap-tiap fase. Pada sistem yang seimbang, daya total tersebut sama dengan tiga kali daya fase, karena daya pada tiap-tiap fasenya sama.

Gambar 4. Hubungan Bintang dan Segitiga yang seimbang.
Jika sudut antara arus dan tegangan adalah sebesar θ, maka besarnya daya perfasa adalah
Pfase = Vfase.Ifase.cos θ
21
sedangkan besarnya total daya adalah penjumlahan dari besarnya daya tiap fase, dan dapat dituliskan dengan,
PT = 3.Vf.If.cos θ
• Pada hubungan bintang, karena besarnya tegangan saluran adalah 1,73Vfase maka tegangan perfasanya menjadi Vline/1,73, dengan nilai arus saluran sama dengan arus fase, IL = If, maka daya total (PTotal) pada rangkaian hubung bintang (Y) adalah:
PT = 3.VL/1,73.IL.cos θ = 1,73.VL.IL.cos θ
• Dan pada hubung segitiga, dengan besaran tegangan line yang sama dengan tegangan fasanya, VL = Vfasa, dan besaran arusnya Iline = 1,73Ifase, sehingga arus perfasanya menjadi IL/1,73, maka daya total (Ptotal) pada rangkaian segitiga adalah:
PT = 3.IL/1,73.VL.cos θ = 1,73.VL.IL.cos θ
Dari persamaan total daya pada kedua jenis hubungan terlihat bahwa besarnya daya pada kedua jenis hubungan adalah sama, yang membedakan hanya pada tegangan kerja dan arus yang mengalirinya saja, dan berlaku pada kondisi beban yang seimbang.
2. Daya sistem 3 fase pada beban yang tidak seimbang
Sifat terpenting dari pembebanan yang seimbang adalah jumlah phasor dari ketiga tegangan adalah sama dengan nol, begitupula dengan jumlah phasor dari arus pada ketiga fase juga sama dengan nol. Jika impedansi beban dari ketiga fase tidak sama, maka jumlah phasor dan arus netralnya (In) tidak sama dengan nol dan beban dikatakan tidak seimbang. Ketidakseimbangan beban ini dapat saja terjadi karena hubung singkat atau hubung terbuka pada beban.
Dalam sistem 3 fase ada 2 jenis ketidakseimbangan, yaitu:
1. Ketidakseimbangan pada beban.
2. ketidakseimbangan pada sumber listrik (sumber daya).
Kombinasi dari kedua ketidakseimbangan sangatlah rumit untuk mencari pemecahan permasalahannya, oleh karena itu kami hanya akan membahas mengenai ketidakseimbangan beban dengan sumber listrik yang seimbang.
22

Gambar 5. Ketidakseimbangan beban pada sistem 3 fase.
Pada saat terjadi gangguan, saluran netral pada hubungan bintang akan teraliri arus listrik. Ketidakseimbangan beban pada sistem 3 fase dapat diketahui dengan indikasi naiknya arus pada salahsatu fase dengan tidak wajar, arus pada tiap fase mempunyai perbedaan yang cukup signifikan, hal ini dapat menyebabkan kerusakan pada peralatan.
Menghitung putaran induction motor

. Putaran motor mempunyai satuan " rpm " yang berarti rotation per minute. Pada induction motor terdapat yang namanya pole atau kutub, jumlah kutub mementukan besarnya putaran motor, semakin banyak kutub maka putaran motor akan semakin rendah begitupun sebaliknya semakin sedikit kutub maka putaran motor akan semakin cepat, namun dalam hal ini jumlah kutub yang ada pada motor umumnya yaitu 2 pole, 4 pole dan 6 pole, besarnya putaran motor ditentukan juga oleh besarnya frekuensi tegangan jala-jala atau pln yang digunakan.
RUMUS MENGHITUNG RPM
RPM = 120 X F / P
Keterangan :
RPM : Rotation per menit
F : Frekuensi jala-jala
P : POLE / Kutub
120 : Nilai tetap
23
Contoh : Diketahui motor dengan daya 5,5 KW, mempunyai jumlah kutub 4, frekuensi yang dipakai 50 Hz, maka berapa putaran motornya. Dengan menggunakan rumus diatas maka akan didapat :
RPM = 120 X 50 / 4 = 1500, maka putaran motornya adalah 1500 RPM.
. Namun pada kenyataan dilapangan, untuk merubah kecepatan motor atau mengaturnya sesuai dengan keperluan, yang dirubah bukan jumlah kutubnya melainkan nilai frekuensinya, dengan menggunakan tambahan alat yang disebut inverter, inverter adalah alat pengatur kecepatan motor, dengan cara memasukan nilai yang sesuai kehendak kita ke parameter yang ada didalamnya maka kecepatan motor akan berputar sesuai dengan nilai atau besaran yang telah kita masukan dan bisa menghitungnya berdasarkan rumus diatas.
. Ini adalah cara praktis dalam mengatur kecepatan motor dengan menggunakan inverter dari pada kita merubah jumlah pole / kutub yang ada pada motor karena hal itu sama saja dengan mengganti motor lama dengan motor baru untuk mendapatkan nilai putaran yang diinginkan dan biayanya pun cukup besar.
2. Pengertian Inverter
Inverter adalah sebuah perangkat elektronik yang mengubah tegangan AC tiga fasa dari jala-jala (berfrekuensi 50 Hz atau 60 Hz) menjadi tegangan DC, kemudian mengubahnya kembali menjadi tegangan AC tiga fasa dengan frekuensi yang bisa diatur-atur sesuai keinginan pengguna/user.
Salah satu aplikasi Inverter dalam dunia keelektroteknikan adalah untuk mengendalikan kecepatan putaran motor AC. Contohnya pada sistem ban berjalan (conveyor belt) Seperti yang kita ketahui bahwa kecepatan putaran motor AC dapat dikendalikan dengan mengatur frekuensi dari tegangan AC yang menjadi sumbernya. Pada gambar di atas, dapat dilihat bahwa PLC mengendalikan Inverter dalam menghasilkan tegangan AC dengan frekuensi yang dinginkan.
Biasanya frekuensi tegangan AC output Inverter komersial dapat dikendalikan dengan menggunakan sinyal tegangan atau sinyal arus eksternal. Oleh karena itu, Slave Output Analog PLC yang dapat menghasilkan sinyal arus, dapat digunakan untuk mengendalikan Inverter dalam menghasilkan tegangan AC dengan frekuensi yang diinginkan.
24
a. Aplikasi dari inverter
Materials handling
• +/- speed
• Brake sequence
• Motor switching
• Management of limit switches
• Switching frequency up to 16 kHz
• Current limitation
• Linear ramps, S, U or customised
• Second ramp Textile
• +/- speed
• Brake sequence
• Motor switching
• Management of limit switches
• Switching frequency up to 16 kHz
• Current limitation
• Linear ramps, S, U or customised
• Second ramp Textile
Komentar
Posting Komentar
Silahkan berkomentar bila ada yang belum jelas